top of page

Cosmetics & Heavy Metals

Cosmetics, preparations repeatedly applied directly to the human skin, mucous membranes, hair and nails, should be safe for health, however, recently there has been increasing concern about their safety. Unfortunately, using these products in some cases is related to the occurrence of unfavourable effects resulting from intentional or the accidental presence of chemical substances, including toxic metals. Heavy metals such as lead, mercury, cadmium, arsenic and nickel, as well as aluminum, classified as a light metal, are detected in various types of cosmetics. In addition, necessary, but harmful when they occur in excessive amounts, elements such as copper, iron, chromium and cobalt are also present in cosmetic products. Metals occurring in cosmetics may undergo retention and act directly in the skin or be absorbed through the skin into the blood, accumulate in the body and exert toxic effects in various organs. Some cases of topical (mainly allergic contact dermatitis) and systemic effects owing to exposure to metals present in cosmetics have been reported. Literature data show that in commercially available cosmetics toxic metals may be present in amounts creating a danger to human health. Thus, the present review article focused on the problems related to the presence of heavy metals and aluminium in cosmetics, including their sources, concentrations and law regulations as well as danger for the health of these products users. Owing to the growing usage of cosmetics it is necessary to pay special attention to these problems.



As part of efforts to assess amounts of inorganic element contamination in cosmetics, the U.S. Food and Drug Administration contracted a private laboratory to determine the total content of seven potentially toxic or allergenic elements in 150 cosmetic products of 12 types (eye shadows, blushes, lipsticks, three types of lotions, mascaras, foundations, body powders, compact powders, shaving creams, and face paints). Samples were analyzed for arsenic, cadmium, chromium, cobalt, lead, and nickel by inductively coupled plasma-mass spectrometry and for mercury by cold vapor atomic fluorescence spectrometry. The methods used to determine the elements were tested for validity by using standard reference materials with matrices similar to the cosmetic types. The cosmetic products were found to contain median values of 0.21 mg/kg arsenic, 3.1 mg/kg chromium, 0.91 mg/kg cobalt, 0.85 mg/kg lead, and 2.7 mg/kg nickel. The median values for cadmium and mercury were below the limits of detection of the methods. The contract requirements, testing procedures, and findings from the survey are described.



The persistence of metals in the environment and their natural occurrence in rocks, soil and water cause them to be present in the manufacture of pigments and other raw materials used in the cosmetic industry. Thus, people can be exposed to metals as trace contaminants in cosmetic products they daily use. Cosmetics may have multiple forms, uses and exposure scenarios, and metals contained in them can cause skin local problems but also systemic effects after their absorption via the skin or ingestion. Even this, cosmetics companies are not obliged to report on this kind of impurities and so consumers have no way of knowing about their own risk. This paper reviewed both the concentration of metals in different types of cosmetics manufactured and sold worldwide and the data on metals' dermal penetration and systemic toxicology. The eight metals of concern for this review were antimony (Sb), arsenic (As), cadmium (Cd), chromium (Cr), cobalt (Co), mercury (Hg), nickel (Ni) and lead (Pb). This was because they are banned as intentional ingredients in cosmetics, have draft limits as potential impurities in cosmetics and are known as toxic.



The heavy metal content of cosmetics may be a cause for concern in that exposure to these metals is associated with adverse consequences. Thus, the aim of this study was to assess consequences attributed to exposure to heavy metals in cosmetics as determined by non-cancer, cancer, and sensitization risks methodologies. The quantification and exposure assessments of aluminum (Al), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), lead (Pb), mercury (Hg), cadmium (Cd), antimony (Sb), and titanium (Ti) were performed by inductively coupled plasma-mass spectrometry. The non-cancer risk assessment of Al, Cr3+, Mn, Fe, Co, Ni, Cu, Zn, Cd, Sb, and Ti in cosmetic samples resulted in a margin of safety (MOS) greater than 100 or a hazard index (HI) of less than 1. However, the probability of lifetime cancer risk (LCR) resulting from dermal exposure to heavy metals from cosmetics exceeded the acceptable risk levels (LCR > 10-5). An exposure-based sensitization quantitative risk assessment determined that the ratios of acceptable exposure level to consumers for Ni, Co, Cu, or Hg were above 1, suggesting an absence of skin-sensitizing potential. For an average daily user of lip cosmetics, the estimated intakes of heavy metals were within the acceptable daily intake (ADI). The percentage of heavy users for which metal intakes exceeded ADIs were 20.37% for Pb, 9.26% for Mn, 1.85% for Cr3+, and 1.85% for Cr6+, respectively. Data suggested that the heavy metals present in cosmetics do not appear to pose a serious risk to health. However, for heavy users of lip cosmetics, contamination with some heavy metals, such as Pb, Mn, and Cr needs to be minimized.



TO REMOVE THESE TOXIC METALS ORDER ADVANCED TRS






Commenti


bottom of page